
Algorithm 805: Computation and Uses of
the Semidiscrete Matrix Decomposition

TAMARA G. KOLDA
Sandia National Laboratories
and
DIANNE P. O’LEARY
University of Maryland

We present algorithms for computing a semidiscrete approximation to a matrix in a weighted
norm, with the Frobenius norm as a special case. The approximation is formed as a weighted
sum of outer products of vectors whose elements are 61 or 0, so the storage required by the
approximation is quite small. We also present a related algorithm for approximation of a
tensor. Applications of the algorithms are presented to data compression, filtering, and
information retrieval; software is provided in C and in Matlab.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language Classifica-
tions—C; Matlab; G.1.2 [Numerical Analysis]: Approximation; H.3.3 [Information Storage
and Retrieval]: Information Search and Retrieval

General Terms: Algorithms

Additional Key Words and Phrases: Singular value decomposition, semidiscrete decomposi-
tion, latent semantic indexing, compression, matrix decomposition

Kolda’s work was performed while she was a postdoctoral fellow at Oak Ridge National
Laboratory and was supported through the Applied Mathematical Sciences Research Program,
Office of Energy Research, U.S. Department of Energy, under contract DE-AC05-96OR22464
with Lockheed Martin Energy Research Corporation. O’Leary’s work was supported by the
National Science Foundation under Grant CCR-97-32022 and by the Department Informatik,
ETH Zürich, Switzerland. An earlier version of this paper appeared as University of Maryland
Technical Report CS-TR-4012/UMIACS-TR-99-22 (April 1999) and Oak Ridge National Labo-
ratory Technical Memorandum ORNL-13766 (April, 1999).
Authors’ addresses: T. G. Kolda, Computational Science and Mathematics Research Depart-
ment, Sandia National Laboratories, Livermore, CA 94551-9217; email: tgkolda@sandia.gov;
D. P. O’Leary, Computer Science Department and Institute for Advanced Computer Studies,
University of Maryland, College Park, MD 20742; email: oleary@cs.umd.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2001 ACM 0098-3500/00/0900–0415 $5.00

ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000, Pages 415–435.

1. INTRODUCTION

A semidiscrete decomposition (SDD) expresses a matrix as a weighted sum
of outer products formed by vectors with entries constrained to be in the set
S 5 $21, 0, 1%. O’Leary and Peleg [1983] introduced the SDD approxima-
tion in the context of image compression, and Kolda and O’Leary [1998;
1999b] used the SDD approximation for latent semantic indexing (LSI) in
information retrieval; these applications are discussed in Section 4.

The primary advantage of SDD approximations over other types of
matrix approximations such as the truncated singular value decomposition
(SVD) is that, as we will demonstrate with numerical examples in Section
6, it typically provides a more accurate approximation for far less storage.

The SDD approximation of an m 3 n matrix A is a decomposition of the
form

Ak 5 @ x1x2 · · · xk #

Ç

Xk

3
d1 0 · · · 0
0 d2 · · · 0
···

···
· · ·

···
0 0 · · · dk

4
Ç

Dk

3
y1

T

y2
T

···
yk

T
4

Ç

Y k
T

5 O
i51

k

di xi yi
T.

Here each xi is an m-vector with entries from the set S 5 $21, 0, 1%, each
yi is an n-vector with entries from the set S, and each di is a positive scalar.
We call this a k-term SDD approximation.

Although every matrix can be expressed as an mn-term SDD approxima-
tion

A 5 O
i51

m O
j51

n

aij ei ej
T,

where ek is the kth unit vector, the usefulness of an SDD approximation is
in developing approximations that have far fewer terms, and we focus on
algorithms for computing such approximating SDDs.

Since the storage requirement for a k-term SDD approximation is k
floating-point numbers plus k~m 1 n! entries from S, it is inexpensive to
store quite a large number of terms. For example, for a dense, single
precision matrix of size 10,000 3 10,000, almost 80,000 SDD terms can
be stored in the space of the original data, and almost 160,000 terms can
be stored for a double precision matrix of the same size.

In Section 2, we discuss an algorithm for computing a weighted SDD
approximation to a matrix. Section 3 focuses on the tensor SDD to form an
approximation to an m1 3 m2 3 · · · 3 mn tensor. Applications of these
algorithms are given in Section 4. A storage-efficient implementation for
the SDD approximation is presented in Section 5. Numerical results with
our software are presented in Section 6.

416 • T. G. Kolda and D. P. O’Leary

ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000.

2. THE WEIGHTED SDD APPROXIMATION

Let A [R m3n be a given matrix, and let W [R m3n be a given matrix of
nonnegative weights. The weighted approximation problem is to find a
matrix B [R m3n that solves

min iA 2 BiW
2 ,

subject to some constraints on B. Here the weighted norm i ziW is defined as

iAiW
2 5 O

i51

m O
j51

n

aij
2wij.

If all the weights are one, then the norm is the Frobenius norm.

2.1 Computing the Weighted SDD Approximation

The case where B is a low-rank matrix has been considered by Gabriel and
Zamir [1979] and others, and they obtain a solution with some similarities
to the truncated singular value decomposition, although computation is
much more expensive. We show how to iteratively generate a weighted
semidiscrete approximation of the form dxyT. Let Ak denote the k-term
approximation (A0 [0). Let Rk be the residual at the kth step, i.e., Rk 5
A 2 Ak21. Then the optimal choice of the next triplet ~dk, xk, yk! is the
solution to the subproblem

min Fk~d, x, y! [iRk 2 dxyTiW
2 subject to x [Sm, y [Sn, d . 0. (1)

Here Rk [A 2 O i51
k21dixiyi

T is the residual matrix. As with the regular
SDD, this is a mixed integer programming problem that can be rewritten as
an integer program. First, recall the definition of the Hadamard or
elementwise product of matrices, i.e., ~A + B! ij 5 aijbij.

THEOREM 1. Solving the mixed integer program (1) is equivalent to
solving the integer program

max F̃k~x, y! [
@xT~Rk + W !y#2

~x + x!TW~y + y!
subject to x [Sm, y [Sn. (2)

PROOF. We can eliminate d in (1) as follows. First rewrite Fk~d, x, y! as

Fk~d, x, y! 5 iRkiW
2 22dxT~Rk + W !y 1 d2~x + x!TW~y + y!. (3)

At the optimal solution, Fk / d 5 0, so the optimal value of d is given by

d* 5
xT~Rk + W !y

~x + x!TW~y + y!
.

Algorithm 805 • 417

ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000.

Substituting d* in (3) yields

Fk~d*, x, y! 5 iRkiW
2 2

~xT~Rk + W !y!2

~x + x!TW~y + y!
. (4)

Thus solving (4) is equivalent to solving (2). e

The integer program (2) has 3 ~m1n! feasible points, so the cost of an
exhaustive search for the optimal solution grows exponentially with m and
n. Rather than doing this, we use an alternating algorithm to generate an
approximate solution to the subproblem. Assuming that y is fixed, F̃k can
be written as

F̃k~x, y! 5
~xTs!2

~x + x!Tv
, (5)

where s [~Rk + W !y and v [W~ y + y!. To determine the maximum, 2m

2 1 possibilities must be checked. This can be reduced to just checking m
possibilities.

THEOREM 2. For the integer program (5), if it is known that x has exactly
J nonzeros, then the solution is given by

xij 5 H sign~sij ! if 1 # j # J
0 if J 1 1 # j # m,

where the pairs of ~si, vi! have been sorted so that

?si1?

vi1

$
?si2?

vi2

$ · · · $
?sim?

vim

.

PROOF. First note that if si is zero, then a nonzero value of xi cannot

affect the numerator of F̃, and xi 5 0 minimizes the denominator, so xi 5 0
is optimal. If vi 5 0, then si 5 0, so choose xi 5 0. Therefore, we need only
consider indices for which si and vi are nonzero, and without loss of
generality, we will assume that the si are all positive and ordered so that
ij 5 j, j 5 1, . . . , m.

We complete the proof by showing that if the optimal solution has
nonzeroes with indices in some set I, and if q [I and p , q, then p [I.

Assume to the contrary, and partition I into I1 ø I2, where indices in I1

are less than p and those in I2 are greater than p. The case p 5 1 is left to
the reader; here we assume p . 1.

For ease of notation, let

S1 5 O
i[I1

si, V1 5 O
i[I1

vi,

418 • T. G. Kolda and D. P. O’Leary

ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000.

and define S2 and V2 analogously.
By the ordering of the ratios s / v, we know that sivp , spvi for all i [

I2; therefore,

S2vp , spV2. (6)

Since I is optimal, we know that

S1
2

V1

#
~S1 1 S2!

2

V1 1 V2

;

therefore, by cross-multiplying and canceling terms, we obtain

S1
2V2 # S2

2V1 1 2S1S2V1. (7)

Similarly,

~S1 1 S2 1 sp!
2

V1 1 V2 1 vp

#
~S1 1 S2!

2

V1 1 V2

,

so

sp
2~V1 1 V2!12S1sp~V1 1 V2!12S2sp~V1 1 V2!

S1
2vp 1 S2

2vp 1 2S1S2vp

S1
2vp 1 S2spV2 1 2S1spV2 by ~6!

~S2
2V1 1 2S1S2V1!

vp

V2

1 S2spV2 1 2S1spV2 by ~7!

~S2spV112S1spV1! 1 S2spV2 1 2S1spV2 by ~6!.

Canceling terms in this inequality we obtain

sp
2~V1 1 V2! 1 S2sp~V1 1 V2! # 0,

a contradiction. e

The algorithm for the weighted SDD approximation, shown in Figure 1,
is the same as the algorithm for the regular SDD approximation [O’Leary
and Peleg 1983] if W is the all ones matrix. The method will generate a
weighted approximation Ak for which k 5 kmax or i A 2 Aki , rmin. The
work of each inner iteration is controlled by the parameters lmax, the
maximum number of allowed inner iterations, and amin, the relative im-
provement threshold. The weighted SDD algorithm can be used for either
dense or sparse matrices. In the case that A or W is sparse, the approximation

Algorithm 805 • 419

ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000.

Ak in Step (2e) is usually not stored explicitly; rather, the individual
elements ~dk, xk, yk! are stored. Similarly, Rk11 + W in Step (2f) can be
applied in Steps (2a), (2b(i)), (2b(ii)), (2b(iii)), and (2d) without explicitly
forming it.

2.2 Convergence of the Weighted SDD Algorithm

We show that the weighted norm of the residual generated by the weighted
SDD algorithm is strictly decreasing and, furthermore, the weighted SDD
algorithm converges linearly to the original matrix.

LEMMA 1. The residual matrices generated by the weighted SDD algo-
rithm satisfy

iRk11iW , iRkiW for all k such that Rk Þ 0.

Fig. 1. Computing a weighted SDD approximation.

420 • T. G. Kolda and D. P. O’Leary

ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000.

PROOF. At the end of the inner iterations, we are guaranteed to have
found xk and yk such that xk

T~Rk + W !yk . 0. The result follows from
(4). e

As with the SDD algorithm, several different strategies can be used to
initialize y in Step (2a) in the weighted SDD algorithm (Figure 1). Here, we
only present the these schemes briefly. The same convergence results hold,
and the proofs are similar to those given for the SDD algorithm in Kolda
[1997], as listed below.

(1) MAX: Choose ej such that j is the index of the column containing the
largest magnitude entry in Rk + Rk + W.

(2) CYC: Choose ei where i 5 ~k mod n!11.

(3) THR: Accept a given unit vector only if it satisfies i RkejiW
2 $ i RkiW

2 / n.

THEOREM 3 [KOLDA 1997]. The sequence $Ak% generated by the SDD
algorithm with MAX initialization converges to A in the Frobenius norm.
Furthermore, the rate of convergence is at least linear.

THEOREM 4 [KOLDA 1997]. The sequence $Ak% generated by the SDD
algorithm with CYC initialization converges to A in the Frobenius norm.
Furthermore, the rate of convergence is at least n-step linear.

THEOREM 5 [KOLDA 1997]. The sequence $Ak% generated by the SDD
algorithm with THR initialization converges to A in the Frobenius norm.
Furthermore, the rate of convergence is at least linear.

Note that although the SDD algorithm can be initialized using a discrete
approximation to the SVD vector, this cannot be done in the weighted-SDD
case, since there is no simple analog to the SVD.

3. THE TENSOR SDD APPROXIMATION

Let A be an m1 3 m2 3 · · · 3 mn tensor over R. The order of A is n. The
dimension of A is m [P j51

n mj, and mj is the jth subdimension. An element
of A is specified as

Ai1i2· · ·in,

where ij [$1, 2, . . . , mj% for j 5 1, . . . , n. A matrix is a tensor of order
two.

As with matrices, we may be interested in a storage-efficient approxima-
tion of a given tensor. We extend the notion of an SDD approximation to a
tensor SDD approximation. First we define some notation for tensors.

3.1 Notation

If A and B are two tensors of the same size (i.e., the order n and all
subdimensions mj are equal), then the inner product of A and B is defined as

A z B [O
i151

m1 O
i251

m2

· · · O
in51

mn

Ai1i2· · ·inBi1i2· · ·in.

Algorithm 805 • 421

ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000.

We define the norm of A, i Ai, to be

iAi2 [A z A 5 O
i151

m1 O
i251

m2

· · · O
in51

mn

Ai1i2· · ·in

2 .

Suppose B is an m1 3 · · · 3 mj21 3 mj11 3 · · · 3 mn tensor of order
n 2 1. Then the ijth (1 # ij # mj) element of the contracted product of A
and B is defined as

~A z B!ij [O
i151

m1

· · · O
ij2151

mj21 O
ij1151

mj11

· · · O
in51

mn

Ai1· · ·ij21ijij11· · ·inBi1· · ·ij21ij11· · ·in.

A decomposed tensor is a tensor that can be written as

X 5 x~1! R x~2! R · · · R x~n!,

where x ~ j ! [R mj for j 5 1, . . . , n. The vectors x ~ j ! are called the compo-
nents of X. In this case,

Xi1i2· · ·in 5 xi1

~1!xi2

~2!· · ·xin

~n!.

LEMMA [KOLDA 2000]. Let A be a tensor of order n and X a decomposed
tensor of order n. Then

A z X 5 ~A z X ~2j!! z x~ j !,

where the notation X ~2j! indicates X with the jth component removed, i.e.,

X ~2j! [x~1! R · · · R x~ j21! R x~ j11! R · · · R x~ p!.

The notion of rank for tensors of order greater than two is a nontrivial
matter (e.g., see Kolda [2000]), but a single decomposed tensor is always a
tensor of rank one.

3.2 Definition of the Tensor SDD Approximation

Suppose we wish to approximate an n-dimensional tensor A as follows,

A ' Ak [O
i51

k

diXi,

where di . 0 and Xi is a decomposed tensor whose components are
restricted to xi

~ j ! [Smj, with S 5 $21, 0, 1%. This is called a k-term tensor
SDD.

The SDD representation is efficient in terms of storage. If the tensor A is
dense, the total storage required for A is

gP
j51

n

mj,

422 • T. G. Kolda and D. P. O’Leary

ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000.

where g is the amount of storage required for each element of A. For
example, if the elements of A are integer values between 0 and 255, then g

is one byte (8 bits). The storage required for the approximation Ak is

kSa 1 bO
j51

n

mjD,

where a is the storage required for each dk and is usually chosen to be
equal to g and b is the amount of storage required to store each element of
S, i.e., log23 bits. Since k ,, P j51

n mj, the approximation generally requires
significantly less storage than the original tensor.

3.3 Computing a Tensor SDD Approximation

As with the regular and weighted SDDs, a tensor SDD approximation can
be constructed via a greedy algorithm. Each iteration, a new d and X are
computed that are the solution to the following subproblem:

min Fk~d, X! [iRk 2 dXi2 subject to d . 0, x~ j ! [Smj for j 5 1, . . . , n, (8)

where Rk [A 2 O
i51

k21

diXi denotes the kth residual matrix. This is a mixed

integer programming problem, but it can be simplified to an integer
program as demonstrated by the following theorem, a generalization of
Theorem 1 (in the case where W is the ones matrix).

THEOREM 6. Solving the mixed integer program (8) is equivalent to
solving the integer program

max F̃~X ! 5
~R z X!2

iX i2
subject to x~ j! [Smj for j 5 1, . . . , n. (9)

PROOF. See Kolda and O’Leary [1999a]. e

The integer programming problem (9) has 3m11m21· · ·1mn possible solu-
tions. To solve this problem approximately, an alternating algorithm will
be used. The idea is the same as for the regular and weighed SDDs. Fix all
the components of X except one, say x ~ j !, and find the optimal x ~ j ! under
those conditions. Repeat this process for another value of j, continuing

until improvement in the value of F̃~ X ! stagnates.
Assume that all components of X are fixed except x ~ j !. Then (9) reduces to

max
~s z x~ j !!2

ix~ j !i2
2 subject to x~ j ! [Smj,

where s [~Rk z X ~2j!! / i X ~2j!i2. This is the same as the problem for the
regular SDD, so we know how to solve it.

Algorithm 805 • 423

ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000.

The tensor SDD approximation algorithm is given in Figure 2. In Step
(2a), X should be chosen so that Rk z X Þ 0. Unless Rk is zero itself (in
which case Ak21 5 A), it is always possible to pick such an X. The for-loop
in Step (2b(i)) does not need to go through the components of X in order.
That loop could be replaced by “For j 5 p~1!, p~2!, . . . , p~n! do,” where
p is an n-permutation. Note that in each step of (2b(i)), the value of X may
change and that the objective function is guaranteed to be at least as good
as it was with the previous X.

3.4 Convergence of the Tensor SDD Algorithm

Like the SDD, the tensor SDD algorithm has the property that the norm of
the residual decreases each outer iteration. Furthermore, we can prove
convergence results similar to those for the SDD (proofs are omitted but are
similar to those for the SDD) using each of the following starting strategies
in Step (2a) of the tensor SDD algorithm:

Fig. 2. Computing a tensor SDD approximation.

424 • T. G. Kolda and D. P. O’Leary

ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000.

(1) MAX: Initialize X 5 ej1

~1! R ej2

~2! R · · · R ejn

~n!, where Rj1j2, . . . , jn is the
largest magnitude element of R.

(2) CYC: Same idea as for the SDD, but now the cycle is P j52
n mj long.

(3) THR: Choose X ~21! 5 ej2

~2! R · · · R ejn

~n! (i.e., x with the first component
removed) such that

i~R z X ~21!!i2
2 $ iRi2YP

j52

n

mj.

Although an appropriate choice of ej2

~2! R · · · R ejn

~n! is guaranteed to
exist, it may be difficult to find because of the large space of elements to
search through.

4. APPLICATIONS

SDD approximations are useful in applications involving storage compres-
sion, data filtering, and feature extraction. As examples, we discuss in this
section the use of an SDD approximation in image compression, chromo-
some classification, and latent semantic indexing of documents.

4.1 Data Compression via SDD and Weighted SDD Approximations

If a matrix consumes too much storage space, then an SDD approximation
is one way to reduce the storage burden. For example, an SDD approxima-
tion can be used for image compression. The SDD was originally developed
by O’Leary and Peleg [1983] for this application. If each pixel value (e.g.,
gray level) is stored as a matrix entry, then a k-term SDD of the resulting
matrix can be stored as an approximation to the original image.

Other matrix approximation techniques have been used for image com-
pression. The SVD [Golub and Van Loan 1989] provides a set of basis
vectors that gives the optimal low-rank approximation in the sense of
minimizing the sum squared errors (Frobenius norm). But these vectors are
expensive to generate and take quite a bit of storage space (n 1 m 1 1
floating-point elements per term, although it is possible to use lower
precision). At the other extreme, predetermined basis vectors can be used
(e.g., Haar basis or other wavelet bases). In this case, the basis vectors do
not need to be explicitly stored, but the number of terms is generally much
larger than for the SVD. Although the SDD algorithm chooses the basis
vectors to fit the particular problem (like the SVD), it chooses them with
restricted entries (like the wavelet bases), making the storage per term
only log23~n 1 m! bits plus one floating-point number.

Experiments using SDD approximations for images achieved 10 to 1
compression (using the SDD with run-length encoding) without visual
degradation of the image [O’Leary and Peleg 1983].

If some portions of the image are more important than others (a face,
rather than clothing, for example), then large weights (i.e., entries in W)

Algorithm 805 • 425

ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000.

could be used to produce greater fidelity of the approximation in these
important regions.

4.2 Data Filtering via SDD and Weighted SDD Approximations

The k-term approximations produced by the SDD algorithm can be thought
of as filtered approximations, finding relations between the columns (or
rows) of the matrix that are hidden by local variations. Thus, if we have
many observations of the same vector-valued phenomenon, then an SDD
approximation of the data can reveal the essential unchanging characteris-
tics.

This fact has application in chromosome classification. Given a “training
set” consisting of many observations of a given type of chromosome (e.g., a
human X chromosome), an SDD approximation of this data extracts com-
mon characteristics, similar to a principal component analysis, but typi-
cally requiring less storage space. Then the idealized representation of this
chromosome can be used to identify other chromosomes of the same type
(chromosome karyotyping). Weights can be used to rate the importance of
the different observations, or their degree of certainty.

For more information on this technique, see Conroy et al. [2000].

4.3 Feature Extraction via SDD and Weighted SDD Approximations

The low-rank approximations produced by the SDD algorithm extract
features that are common among the columns (or rows) of the matrix. This
task is addressed by latent semantic indexing (LSI) of documents. A
database of documents can be represented by a term-document matrix, in
which each matrix entry represents the importance of some term in a
particular document. Documents can be clustered for retrieval based on
common features. Standard algorithms use a low-rank SVD to extract these
feature vectors, but the storage involved is often greater than that for the
original matrix. In contrast, SDD approximations have been used by Kolda
and O’Leary [1998; 1999b] to achieve similar retrieval performance at a
much lower storage cost, and weights could be added to ensure that critical
terms are weighted more heavily in the retrieval.

4.4 Image Compression with a Tensor SDD

A n 3 m pixel color image is usually broken into its composite colors for
storage, i.e., red, green, and blue for an RGB image. This results in a n 3
m 3 p image where p is the number of colors. The tensor SDD algorithm
can be used to compress such an image and should be more efficient than
individually compressing the matrix associated with each color.

Further, collections of gray or color images can be compressed using the
tensor SDD algorithm since they form an n 3 m 3 p 3 q tensor where q
is the number of images. If the images are related, then this should again
be more efficient than compressing the images separately.

426 • T. G. Kolda and D. P. O’Leary

ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000.

5. IMPLEMENTATION DETAILS

We provide Matlab software for computing SDD and weighted SDD approx-
imations to matrices and for computing SDD approximations to tensors.

We also provide C software for computing SDD approximations which
can be extended to weighted or tensor SDDs. We do not provide the
extension here since it will vary by application. The software we provide
assumes that one has a sparse matrix stored in compressed sparse column
(CSC) format (e.g., see Barrett et al. [1994, p. 65]) and is applicable to
problems arising, for example, in latent semantic indexing in information
retrieval.

In our discussion of the implementation details, we focus on the C data
structures and implementation of the regular SDD algorithm that take
advantage of the compressed storage.

5.1 Data Structures

An entry from the discrete set S, referred to as an S-value, can be stored
using only log23 bits. We actually use two bits of storage per S-value
because it is advantageous in computations involving the S-values (see
Section 5.2) and requires only 26% more memory. The first bit is the value
bit and is on if the S-value is nonzero and off otherwise; the second bit is
the sign bit and is on for an S-value of 21, off for 1, and undefined for 0
(Table I). The undefined bits would not be stored if we were storing using
only log23 bits per S-value.

Each iteration, a new ~d, x, y! triplet is computed. The x and y vectors of
length m and n, respectively, are referred to as S-vectors. In SDDPACK, we
store each S-vector’s value and sign arrays packed into unsigned long
integer arrays.

Suppose that we are working on a p-bit architecture (i.e., the length of a
single word of memory is p bits). Then the memory allocated to the value
array to hold m bits is m / p words. Storage for the sign array is the same.
An example of an S-vector and its representation on an 8-bit architecture is
given in Figure 3. Notice that extra bits in the last word of the array and
sign bits associated with zero-values are undefined. Extra bits are ignored
(i.e., masked to an appropriate value) in any calculations. We used an 8-bit
example for simplicity; current architectures are generally 32- or 64-bit
(Table II).

Table I. Bit Representation of S-Values

S-Value Value Bit Sign Bit

0 0 undef.
1 1 0

21 1 1

Algorithm 805 • 427

ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000.

5.2 Computations with Objects Using Packed Storage

Given an S-vector in packed storage, we can look up the value in a
particular entry as follows. If i is the desired entry, then the index into the
packed array is i div p, and the bit we want inside that word is i mod p,
and the desired bit can be masked off. We first do a mask on the
appropriate word in the value array. If the result is zero, then entry i is
zero, and we need do no further work. Otherwise, the entry is either 11 or
21, and we need to determine the sign. We mask off the appropriate word
in the sign array. If that is zero, the entry is 11; otherwise, it is 21.

For example, Figure 4 shows how to look up entry 10 in the example in
Figure 3. Here i is the desired entry. To compute index , the index into the
packed array, divide by p, the number of bits per word. Since p is always a
power of two, this can be accomplished by a right shift. In this example, we
right shift 3 since log28 5 3. Given the correct index into the packed
arrays, the correct bit inside the word is determined by a mod by p. Again,
since p is always a power of two, we can use a shortcut by doing a logical
AND with p 2 1, in this example, 7. Then mask the appropriate word in

Fig. 3. Illustration of svector data structure.

Table II. Current Architectures

32-Bit 64-Bit

Sun Sparc SGI Octane
Intel Pentium Dec Alpha
IBM RS6000

Fig. 4. Looking up a value in a packed array.

428 • T. G. Kolda and D. P. O’Leary

ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000.

the value array. In this example, it is nonzero, so the entry is either 11 or
21. Then mask the appropriate word in the sign array and determine that
the entry is 11.

Note that the alignment of the value and sign arrays makes it easy to do
individual lookups of values. If we did not store the “filler” bits in the sign
array for the zero entries, the sign array would be much shorter, but we
would have a difficult time knowing where in the sign array to look for the
appropriate bit.

In the previous example, we saw how to look up a random entry in a
packed array. Often we walk through an S-vector in sequence. In that case,
computations can be performed even more quickly by copying the current
value and sign words into the register to be used p times and quickly
updating the mask with just a single left shift. Every p entries, we reset
the mask to one and swap the next value and sign words into the register.

The inner product between two S-vectors, something that we require, can
be computed as follows. The result is the number of nonzeros in common
minus twice the number of common nonzeros with opposite signs.
Pseudocode is given in Figure 5 for the inner product of two S-vectors a and
b. In practice, the logical ANDs and ORs are done on a word-by-word basis
and the popcount (sum) is determined using a lookup table on a byte-by-
byte basis. So, for computing the inner product of two m-long S-vectors, the
work required is 3m / p14m / 8 and requires no multiplication.

Each iteration of the SDD calculation, the most expensive operations are
the computations of Rky or Rk

Tx (Steps (2b(i)) and (2b(ii)) of the SDD
Algorithm of Figure 1). We focus on the computation of Rky and explain the
differences for the transpose at the conclusion. The residual breaks into
two parts: the original matrix, A, and a ~k 2 1!-term SDD approximation
that we denote by XDY T.

The computation v 5 Ay is a sparse matrix times an S-vector. The sparse
matrix is stored in CSC format. We loop through the matrix columnwise,
which means that we walk through the y-vector in sequence. If yj is zero,
then nothing is done with column j. Otherwise, we either add ~ yj 5 1! or
subtract ~ yj 5 21! the entries in column j from the appropriate entries in
the solution vector v.

The computation of w 5 XDY Ty breaks down into three parts: Y Ty,
D~Y Ty!, and X~DY Ty!. The first part is an S-matrix times an S-vector,
which reduces to an inner product between two S-vectors for each entry in
the solution. The result of Y Ty is an integer vector. The D~Y Ty! is just a
simple scaling operation, and the result is a real vector. The final product is
X~DY Ty!, and in this case we walk through each bit in the X matrix

Fig. 5. Inner product of two S-vectors.

Algorithm 805 • 429

ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000.

column by column and take appropriate action. Again, only additions and
subtractions are required, no multiplications.

In the case of the transpose computation, the main difference is in the
computation of ATx. Here, we are forced to use random access into x since
A is stored in CSC format. The method for computing ~ XDY T!Tx is nearly
identical to that described previously for XDY Ty, except that the roles of X
and Y are swapped.

So, the only multiplications required in our computations are the diago-
nal scalings; everything else is additions and subtractions. Further, the
pieces of an SDD approximation are small and fit well into cache.

6. NUMERICAL RESULTS

The computational experiments presented here are done in Matlab, with
the Matlab code and examples provided in SDDPACK. In general, the C
SDDPACK code should be used when speed and storage efficiency are
concerns. No results are presented here for the weighted or tensor SDDs
algorithms although MATLAB code for these decompositions are included.

We discuss previous research and present new results on the SDD
algorithm and starting criteria as well as comparisons between SDD and
SVD approximations.

Kolda [1997] presents comparisons of the various starting criteria on
small, dense matrices. To summarize, the MAX, CYC, and THR techniques
are nearly identical in performance. The SVD initialization typically re-
sults in fewer inner iterations per outer iteration, but the gain is offset by
the expense of computing the starting vector.

Kolda and O’Leary [1998] compared SDD and SVD approximations for
latent semantic indexing for information retrieval. At equal levels of
retrieval performance, the SDD model required approximately 20 times
less storage and performed queries about twice as fast. On the negative
side, the SVD approximation can be computed about four times faster than
the SDD approximation for equal performance levels. The SDD computa-
tions used option PER, as described subsequently—we may be able to
improve the speed and performance by using option THR instead.

We compare various initialization strategies for the SDD algorithm on
several sparse matrices from MatrixMarket; the test set is described in
Table III. We test four different initialization strategies as listed below.

THR: Cycle through the unit vectors (starting where it left off at the
previous iteration) until i Rkeji2

2 $ i RkiF
2 / n, and set y 5 ej. (Threshold)

Table III. Test Matrices

Matrix Rows Cols NNZ Rank Density(%)

bfw62a 62 62 450 62 11.7
impcol_c 137 137 411 137 2.2
west0132 132 132 414 132 2.4
watson2 66 67 409 66 9.2

430 • T. G. Kolda and D. P. O’Leary

ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000.

CYC: Initialize y 5 ei, where i 5 ~~k 2 1! mod n!11. (Cycling)

ONE: Initialize y to the all ones vector. (Ones)

PER: Initialize y to a vector such that elements 1,101,201, . . . are one
and the remaining elements are zero. (Periodic ones)

We do not test the MAX strategy because these matrices are sparse, so
the residual is stored implicitly. The “ONE” and “PER” strategies are tested
to compare to past initialization strategies used by O’Leary and Peleg
[1983] and Kolda and O’Leary [1998]. The other parameters of the SDD
algorithm are set as follows. We set kmax to the rank of the matrix for
comparison to the SVD which will have a zero residual at the point. We set
rmin 5 0 which forces the SDD algorithm to continue until it has a zero
residual or, the more likely scenario, k 5 kmax. We set amin 5 0.01 which
was chosen empirically to balance work and approximation quality. We set
lmax 5 100 which is a large enough bound that it is never attained.

The performance of these four strategies on our four test matrices is
shown in Tables IV and V. The tables compare the relative reduction in the
residual (as a percentage), the average number of inner iterations (which
includes the extra work for initialization in THR), and the density of the
final factors (as a percentage). The initialization can have a dramatic affect
on the residual after k terms. In the impcol_c and watson2 matrices, THR
and CYC are drastically better than ONE and PER. The number of inner
iterations is lowest overall for CYC, with THR being a close second. In
terms of density, THR and CYC are drastically better in every case,
perhaps because the initial vector is sparse. It seems that the density of the
factors may be somewhat related to the density of the original matrix.
Overall, THR is best, with CYC a close second.

Table IV. Comparison of Initialization Techniques for bfw62a and impcol_c

bfw62a impcol_c

Init. % Resid. In. Its. % Density % Resid. In. Its. % Density

THR 28.19 3.69 9.33 3.53 2.58 1.79
CYC 25.54 3.73 9.55 7.86 3.47 6.47
ONE 22.86 6.81 41.13 36.93 5.95 24.32
PER 25.48 6.79 21.48 31.09 6.39 21.24

Table V. Comparison of Initialization Techniques for west0132 and watson2

west0132 watson2

Init. % Resid. In. Its. % Density % Resid. In. Its. % Density

THR 0.00 5.62 1.95 16.99 3.02 3.87
CYC 0.01 3.25 1.68 20.51 2.76 4.17
ONE 0.01 5.64 11.97 78.74 5.42 18.94
PER 0.30 8.46 3.54 75.99 4.82 10.69

Algorithm 805 • 431

ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000.

In Figures 6–9, the SVD, SDD-THR, and SDD-CYC are compared. The
results on bfw62a are given in Figure 6. The upper left plot shows a
comparison of the relative residual (i Rki / i R0i) versus the number of
terms. The SVD is the optimal decomposition for a fixed number of terms,
so the SDD curves will lie above it. However, the SDD algorithm still gives
good reduction in the residual, requiring only about twice as many terms as
the SVD for the same level of reduction. SDD-THR gives a better residual
than SDD-CYC until the last few terms, where SDD-CYC “catches up.” In
the upper right, a plot of the residual versus the storage is shown; for the
same level of reduction in the residual, the storage requirement for the
SDD approximation is about one to two orders of magnitude less than for
the SVD. In the bottom plot, the singular values and SDD values are

shown, where the ith SDD value is defined as d̂i 5 diixii2iyii2. Initially,
the SDD values are smaller than the singular values because they cannot
capture as much information; later, they are larger because they are
capturing the information missed initially.

The impcol_c matrix has an interesting singular value pattern (see
Figure 7): there is one isolated singular value at 11, a cluster of singular
values at 3, and another cluster at 2. SDD-THR mimics the SVD closely
because SDD-THR also finds one isolated singular SDD value, as many
SDD values at 3, and almost as many SDD values at 2. SDD-CYC, on the

0 20 40 60
0

0.2

0.4

0.6

0.8

1
Residual Norms vs. No. of Terms

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1
Residual Norms vs. Storage

0 10 20 30 40 50 60
0

1

2

3

4
Singular vs. SDD values

Fig. 6. Comparison of the SVD (solid line, x marks), SDD-THR (dashed line, o marks), and
SDD-CYC (dotted line, triangle marks) on bfw62a .

432 • T. G. Kolda and D. P. O’Leary

ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000.

other hand, has trouble mimicking singular values because it does not pick
out the isolated value at first. Still, both SDD variants are superior to the
SVD in terms of storage versus residual norm.

On west0132 (see Figure 8), we see phenomena similar to that for
impcol_c . SDD-THR finds isolated SDD values and quickly reduces the
residual—almost as quickly as the SVD itself in terms of number of terms.
SDD-CYC has more trouble isolating SDD values but eventually gets them
as well. Here, SDD-THR is superior to the SVD in terms of storage, but
SDD-CYC is not.

The last matrix, watson2 (see Figure 9), most closely resembles bfw62a
in the structure of its singular values, although watson2 has three eigen-
values that are slightly isolated, and we can see that both SDD methods
eventually pick out such values which results in the steeper drops in the
residual curves. Again, SDD-THR does better than the SDD-CYC in all
respects. SDD-THR requires about twice as many terms to get the same
reduction in storage as the SVD, while using an order of magnitude less
storage.

7. CONCLUSIONS

By presenting the code for computing SDD approximations, we hope to
stimulate more uses of this storage-efficient matrix approximation method.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Residual Norms vs. No. of Terms

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1
Residual Norms vs. Storage

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15
Singular vs. SDD values

Fig. 7. Comparison of the SVD (solid line, x marks), SDD-THR (dashed line, o marks), and
SDD-CYC (dotted line, triangle marks) on impcol_c .

Algorithm 805 • 433

ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Residual Norms vs. No. of Terms

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1
Residual Norms vs. Storage

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600
Singular vs. SDD values

Fig. 8. Comparison of the SVD (solid line, x marks), SDD-THR (dashed line, o marks), and
SDD-CYC (dotted line, triangle marks) on west0132 .

0 20 40 60
0

0.2

0.4

0.6

0.8

1
Residual Norms vs. No. of Terms

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1
Residual Norms vs. Storage

0 10 20 30 40 50 60
0

1

2

3

4
Singular vs. SDD values

Fig. 9. Comparison of the SVD (solid line, x marks), SDD-THR (dashed line, o marks), and
SDD-CYC (dotted line, triangle marks) on watson2 .

434 • T. G. Kolda and D. P. O’Leary

ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000.

ACKNOWLEDGMENTS

We are grateful to Professor Walter Gander and Professor Martin Gut-
knecht for their hospitality at ETH.

REFERENCES

BARRETT, R., BERRY, M., CHAN, T., DEMMEL, J., DONATO, J., DONGARRA, J., EIJKHOUT, V., POZO,
R., ROMINE, C., AND VAN DER VORST, H. 1994. Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods. SIAM, Philadelphia, PA.

CONROY, J., KOLDA, T. G., O’LEARY, D. P., AND O’LEARY, T. 2000. Chromosome identification.
Lab. Invest.. To be published.

GABRIEL, K. R. AND ZAMIR, S. 1979. Lower rank approximation of matrices by least squares
with any choice of weights. Technometrics 21, 489–498.

GOLUB, G. AND VAN LOAN, C. F. 1989. Matrix Computations. 2nd ed. Johns Hopkins
University Press, Baltimore, MD.

KOLDA, T. G. 1997. Limited-memory matrix methods with applications. Ph.D. Dissertation.
University of Maryland at College Park, College Park, MD.

KOLDA, T. G. 2000. Orthogonal rank decompositions for tensors. Tech. Rep. SAND2000-8566.
Sandia National Laboratories, Livermore, CA.

KOLDA, T. G. AND O’LEARY, D. P. 1998. A semidiscrete matrix decomposition for latent
semantic indexing in information retrieval. ACM Trans. Inf. Syst. 16, 4, 322–346.

KOLDA, T. G. AND O’LEARY, D. P. 1999a. Computation and uses of the semidiscrete matrix
decomposition. Tech. Rep. CS-TR-4012 and UMIACS-TR-99-22. Department of Computer
Science, University of Maryland, College Park, MD.

KOLDA, T. G. AND O’LEARY, D. P. 1999b. Latent semantic indexing via a semi-discrete matrix
decomposition. In The Mathematics of Information Coding, Extraction and Distribution, G.
Cybenko, D. P. O’Leary, and J. Rissanen, Eds. IMA Volumes in Mathematics and Its
Applications, vol. 107. Springer-Verlag, Vienna, Austria, 73–80.

O’LEARY, D. P. AND PELEG, S. 1983. Digital image compression by outer product
expansion. IEEE Trans. Commun. 31, 441–444.

Received: April 1999; revised: December 1999; accepted: May 2000

Algorithm 805 • 435

ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000.

